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Abstraet--A numerical technique for simulating turbulent flows in which the free surface is allowed to 
undergo arbitrarily large deformations and is subject only to a maximum slope limit is applied to turbulent 
open channel flow at a Reynolds number of approximately 3000 based on the surface velocity and depth. 
The test problem has been extensively studied in the literature and allows detailed comparisons to be made. 
It is found that the method is in general agreement with published results and can be used for a more 

extensive examination of turbulent fluid mechanics at a free surface. 

1. INTRODUCTION 

The turbulent motion of a liquid at a free surface is 
much less understood than the corresponding motions 
at a solid boundary, but the practical applications 
are equally important. For example, the dispersion of 
pollutants in rivers and coastal waters is governed by 
surface phenomena. It is natural to turn to direct 
numerical simulation (DS) of the turbulence, and this 
approach is able to produce data that are more com- 
plete and often more accurate than experiments for 
near-wall bounda:2¢ layers, but are limited to low 
Reynolds numbers. The large eddy simulation (LES) 
approach is closely related to DS but retains only the 
large eddies or grid scales with the smaller eddies or 
sub-grid scales being represented by a sub-grid model 
(SGM). The method thus has the disadvantage of 
being dependent on a model but experience has shown 
that the dependence is much less severe than for other 
methods such as k-e or algebraic stress models. The 
LES approach is able to extend the Reynolds number 
of a simulation without increasing the computational 
resources required. A review of numerical simulation 
is given by Rogallo and Moin [1], and some recent 
simulations of channel flow are given by Kim et al. [2] 
and Rai and MoirL [3]. 

An extension of the simulation techniques for wall 
boundary layers lo include a free surface has been 
given by Thomas et al. [4] ; in this paper the method 
is applied to an open channel at a Reynolds number 
of Re + = 171 (based on the wall shear velocity) and 
results are compared against the previous simulations 
of Kim et al. [2], and a similar simulation by Lam 
and Banerjee [5] which approximated the free surface 
using a free-slip boundary condition on a rigid upper 
surface. The present simulation is the first application 
of the free surface method to a well-documented test 
problem, and the objective is to verify the computer 
code and explore !Lts behaviour. Once the authors are 

satisfied with its performance they will use the code to 
look in some detail at free surface turbulence. 

2. COMPUTATIONAL DOMAIN 

Turbulent flow is considered of an incompressible 
fluid of kinematic viscosity v maintained by gravity in 
an infinite open channel of depth d. The Cartesian 
coordinates (x, y, z) are aligned with the channel such 
that x points in the streamwise direction, y points 
across the stream, and z points upwards from the bed 
as shown in Fig. 1. The channel slopes at a small 
angle ~ relative to the horizontal so that the flow is 
maintained with mean bed stress '[b : P u2 where u~ 
denotes the characteristic shear velocity (~yd) 1/2, g 
denotes the acceleration due to gravity and p is set 
equal to 1. The two characteristic lengths for this flow 
are the depth d and the viscous length v/u~ which 
governs the structure of the flow near the bed. The 
ratio u~d/v is denoted Re + and is set equal to 171 to 
match the Lam and Banerjee [5] simulation and be 
close to the Kim et al. [2] simulation at Re + = 180 
(certain quantities are made non-dimensional using 
the length v/u~ and are denoted by a superscript +).  

The Reynolds number Re = usd/v based on the 
mean surface velocity us and channel depth is given 
by (u,/u~)Re +, where uJu~ is determined from the 
simulation ; the fine grid simulation yielded 
(us/u~) = 17.6 and Re = 2993. The free surface is gov- 
erned by the Froude number Fr = u s / x / ~ ,  which can 
also be expressed as x//~(u,/uO. The computational 
method imposes two constraints on the value that Fr 
can take : the wave slope limit requires that breaking 
waves cannot be tolerated and hence it is expected 
that Fr should be less than unity, and the size of a 
time-step is controlled by a Courant number based on 
the larger of u~ and x / ~ ,  and hence Fr must not be 
too small. The slope e was set to 1/1000 and hence 
a value of Fr = 0.55 was accepted. The relationship 
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cs subgrid constant  
d depth 
D 2 discrete Laplacian 
Fr Froude number  
g acceleration due to gravity 
G, Hi rhs of finite difference equations 
h surface elevation 
k turbulence kinetic energy 
Kx, Ky wavenumber (cycles per box length) 
lx, ly computational  box lengths 
p pressure 
Re Reynolds number,  -= usd/v 
Re + Reynolds number  based on shear 

velocity, - u,d/v 
Sij symmetric part of  mean velocity 

gradient 
t time 
u~ mean surface velocity 
u~ mean shear velocity 
(u, v, w) velocity vector 
u . . . .  u . . . .  Wrms rms turbulence intensities 

NOMENCLATURE 

U+ 

x, y, z 

mean velocity normalised using u, 
provisional velocity used in finite 
difference scheme 
coordinates. 

Greek symbols 
channel slope 

6 finite difference operator 
6h characteristic amplitude of surface 

deformation 
A subgrid length scale 
At time step 
Ax, Ay, Az finite difference mesh size 
e turbulence dissipation 
t/ Kolmagorov length scale 
x von Karman ' s  constant  
2 mean streak spacing 
v coefficient of viscosity 
vT coefficient of subgrid eddy viscosity 
rb mean bed stress, --- u 2. 

between the amplitude of surface waves and the 
Froude number  is examined in more detail in Section 
8. 

Following Kim and Moin [6], it was assumed that 
the turbulence is homogeneous in horizontal planes 
and use was therefore made of a computational  
domain with periodic boundary  conditions. The 
lengths lx and ly are chosen such that the slowest decay- 
ing two-point velocity correlation is negligible over 
half a box length. This can be estimated initially from 
experimental measurements, and confirmed a postiori 
from the behaviour of the computed correlations. Kim 
et al. [2] used lx = 4nd, ly = 2nd although their com- 
puted correlations suggest that the the smaller box 
of lx = 6d, ly = 2d might be large enough. Lam and 
Banerjee [5] used a box of lx = 2nd, ly = nd. The 
authors have adopted lx = 6d, ly = 2d which in wall 
units is Ix + = I026,/+ = 342 and d + =  171. Four  
simulations in the same size domain were run using a 
series of finer meshes, the coarsest of which was also 
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Fig. 1. Coordinate system and channel. 

run with a subgrid model. A comparison of the com- 
putational domains is presented in Table 1. 

Ideally all scales of turbulence should be modelled 
down to the Kolmogorov length scale r/+, which 
characterises the size of the smallest, dissipating 
eddies. Kim et al. [2] estimate that the Kolmogorov 
scale for this flow is approximately equal to 2 and is 
considerably smaller than the horizontal grid resolu- 
t ions:  however, it appears that this degree of res- 
olution of the turbulent motions is sufficient to achieve 
a realistic simulation. 

3. TWO-POINT CORRELATIONS AND SPECTRA 

The dominant  feature of the near-wall region is the 
presence of low-speed streaks ; these have an approxi- 
mate mean spanwise spacing of 2 + - -  lOOv/u, at 
z + = 10 which increases with distance from the wall 
[7]. The two-point velocity correlations from run R3 
are presented in Fig. 2(a) and (b). The slowest decays 
show relatively small correlations at a streamwise sep- 

I + aration of ~l~, indicating that the computat ional  
domain has adequate length, but  the correlations at a 
spanwise separation of ½1 + are less small and indicate 
that the width should be increased. The negative mini- 
mum in the Ruu(ry) spanwise correlation occurs at 
y+ = 40; this implies a streak spacing of 2 + = 80 
which is the correct order of magnitude but  about  
20% lower than expected. This may be improved by 
using a slightly wider box. 

The computed energy spectra for R3 are shown in 
Fig. 3, where Kx and Ky are measured as the number  
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Table 1. Computational parameters : F denotes Fourier Chebyshev modes ; double entries under Az + indicate (min, max) 
values on a stretched mesh 

Run Mesh size C I~ Ax + Ay + Az + uJu, 

R0 SGM 15 x 16 x 16 1026 342 63.75 21.37 10.68 18.0 
R1 16 x 16 × 16 1026 342 63.75 21.37 10.68 16.0 
R2 32 x 32 x 32 1026 342 31.88 10.68 5.34 15.5 
R3 64 × 64 x 64 1026 342 15.94 5.34 2.67 17.6 
KMM 1987 192 x 160 x 129 2261 1130 ~ 12 ~7 (0.1, 4.4) 18.1 
LB 1988 32×64x65 F 1073 537 33 8 (0.1,4.2) 17.9 

of  cycles per box length l~ and ly, respectively. The 
spectra have been computed  for a single time 44d/u~ 
and the scatter in the velocity spectra has been reduced 
by averaging over 1:he depth. The energy of  the high 
wavenumbers  is many orders of  magnitude less than 
that  of  the large eddies and there is no evidence of  
energy pile-up or aliasing errors. This confirms that  
there is no need of  special anti-aliasing treatment.  As 
found by Kim et cIl. [2] (hereafter denoted K M M ) ,  
the different velociLy components  decay at the same 
rates with the spanwise decay more rapid than the 
streamwise decay. The overall decay rates are higher 
than those of  K M M  ; this is expected because a finite 

difference discretisation of  the viscous terms is gen- 
erally more diffusive at higher wavenumbers  than a 
corresponding spectral discretisation which is exact. 
This tendency can be reduced by increasing the res- 
olution or using higher order spatial discretisation but 
it is not  known to what  extent the curtailment of  
the spectra by weak numerical damping affects the 
computed statistics. The evidence seems to suggest 
that  provided the numerical damping takes effect at a 
wavenumber  kc such that  the magnitude of  fluc- 
tuations at wavenumbers  k > kc is small in com- 
parison with those at k << kc then the effect can be 
ignored. A simple analysis o f  the viscous term shows 
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Fig. 2. (a) Two-point correlations (streamwise separations): - - ,  Ruu; 
z ÷ =  50, z /d=0.29;  bottom--z + =  12, z/d=O.07. (b) Two-point 
ations) : - - - ,  Ru~ ; - - -  , R ~ ; - - . - - ,  Rww: top---z + = 50, z/d= 0.29; bottom--z + = 12, z/d = 0.07; mini- 

mum in R~.~ indicates a streak spacing 2 + ~ 80. 
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Fig. 3. Energy spectra: ©, E~u; [3, E~; A,  Eww; +, Ehh 
surface elevations. (a) streamwise; (b) spanwise (velocity 
correlations averaged over depth, wavenumbers K measured 

in cycles per box period). 

that the dissipation is increased by approximately 
100% above its proper value for k A x  of about 1.5 ; 
this gives a rough estimate for ko, and corresponds to 
a wavenumber Kc in Fig. 3 of approximately 15. This 
is relatively low and suggests that the damping is prob- 
ably significant in the simulation. As engineering 
applications in fluid mechanics are typically for flows 
in non-ideal geometry for which spectral methods can- 
not be used it would be useful to quantify these effects 
more precisely. 

The wave elevation spectra in Fig. 3 have not been 
averaged and show more scatter, also the effects of 
numerical truncation error are visible on both the 
streamwise and spanwise spectra. The spurious energy 
is six orders of magnitude smaller than the dominant 
free surface modes and is insignificant. The free sur- 
face waves are examined in more detail in Section 8. 

4. NUMERICAL TECHNIQUE 

The velocity field u~ = (u, v, w) satisfies a discretised 
form of the Navier-Stokes equations and the surface 
elevation h satisfies Oh/& = G, where G is defined 
below. Second-order finite differences on a staggered 
mesh were used with an unstructured volume of fluid 

(VOF) type treatment at the free surface. The con- 
vection terms are approximated by central difference 
type operators which conserve total momentum and 
kinetic energy in the presence of arbitary surface 
deformations. The scheme requires that the local sur- 
face slope does not exceed the slope of a cell diagonal 
and so breaking waves cannot be simulated. This 
restriction has been imposed because of the com- 
putational complexity associated with different com- 
binations of split/merged surface cells. A more com- 
prehensive description is given in the paper by Thomas 
et al. [4]. Let us define the quantities : 

G7 = - + dz  , 

I 6u~uj ]" 
H7 = - ~ +vDZui+gi  , 

where n denotes the discrete time level, 3 the finite 
difference operator, D 2 the discrete Laplacian. The 
time advancement scheme used originally was only 
first-order accurate and although it conserved the 
potential energy of surface waves it proved to be 
unsuitable for simulating turbulence. It is necessary 
that the time truncation error associated with the con- 
vection terms be very small compared with the viscous 
dissipation term, and this could be satisfied only for 
unacceptably small time steps. A combination of an 
Adams-Bashforth scheme for the momentum terms 
and a Crank-Nicholson scheme for the surface elev- 
ation was finally used ; this is not strictly conservative 
of wave energy but is able to simulate both turbulence 
and free surface waves accurately provided that the 
Courant numbers uAt /Ax  and ~ / g d A t / A x  are small. 
The solution is advanced over a timestep using the 
equations : 

f l - u7  3 1 @,-1 
- : ~ -  ' /47-'+ (1) 

At 7 2 ~x~ ' 

u7 +~ -fig 3 6p" 
At  2 6x i '  

(2) 

(3) 
2 af, D2p n 

3At 6x , '  

h "+1 - h "  
_ _  1 1 1 n 

At = ~G"+ + ~G , (4) 

where fi denotes an intermediate variable. The con- 
tinuity equation 6 ~  + ~/6xj = 0 is enforced at'time level 
n + 1 and is equivalent to the Poisson equation (3) for 
the pressure p. First, fi is computed using equation 
(1) and then p" is determined such that u7 + 1 satisfies 
continuity by solving equation (3). The boundary con- 
ditions are assumed built in to the difference operators 
and need not be explicitly treated. The finite difference 
form ofD 2 produces a 15-point star at the free surface 
which reduces to the usual 7-point star in the interior 
and the resulting system of equations were solved 
using an SOR method with red-black labelling in 
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Fig. 4. Mean velocity profiles : O, R3 64 × 64 x 64 mesh ; I-q, 
R2 32x32x32 mesh; /%, R1 16x16x16 mesh; x,  R0 
16 x 16 x 16 mesh and subgrid model; + ,  Nishino and Kas- 
agi [8], experimental data; V, Lam and Banerjee [5], com- 

puted data 30 ~< z ÷ ~< 130; - - - ,  u + = z +. 

horizontal  planes t.a enable vectorisation and Gauss -  
Siedel treatment vertically. In practice the SOR 
method is much faster than might be expected : the iter- 
ation starts with the last known pressure as an initial 
approximation,  and in a turbulent flow the large-scale 
features o f p  change relatively slowly compared with 
the small-scale featares ; and this is well matched to the 
known convergenc,~ rates of  SOR at different scales. It 
appears that under the circumstances of  the simu- 
lation relatively few iterations are needed at each time 
step. Once p is determined, the new velocity is updated 
using equation (2). The new surface elevation h "+1 is 
found from equation (4) which is weakly non-linear 
in that G "+ ~ depends on h "+ ~ and is solved by iteration 
and converges rapidly. The overall scheme has been 
tested successfully on simple laminar flows and free 
surface solitons. "['he subgrid model  used in R0 was 
a standard Smagorinsky model :  the viscosity v is 
enhanced by an eddy viscosity VT defined as : 

VT := (C~A) 2 (2S~S~:)1/2, 

where S o denotes the symetric part of  the mean vel- 
ocity gradient, A the cube root  of  the cell volume, and 
Cs a model  constant taken as equal to 0.15. 

The simulation was started from an initial semi- 
parabolic profile x~ith superimposed random numbers 
to create an artificial turbulence field and was inte- 
grated over time for 36d/u~ until a statistically steady 
or fully developed turbulent flow was indicated by the 
total stress (see Fig. 5). A timestep At = O.O005d/u, 
was used for run R3;  the coarser mesh runs were 
scaled to use the same Courant  numbers. Statistics 
were averaged over a further 8d/u~, 

5. M E A N  VELOCITY 

The mean velocJLty profile u ÷ = Um/U~ normalised by 
the wall shear velocity is shown in Fig. 4. Within the 
laminar sublayer z + < 6 the profiles converge onto 
the the linear law u ÷ =  z ÷, and beyond z ÷ >  30 

show logarithmic behaviour. The computed profile 
from run R3 closely follows the log-law u ÷ =  
x - '  In (z÷)+5.6 ,  where the yon Karman  constant is 
determined as x = 0.41. There is evidence of  a wake 
region near the free surface associated with the bound- 
ary condit ion d u + / d z  = 0 at z + = Re  +. The mean 
velocity computed by Lam and Banerjee [5] (hereafter 
denoted LB), is plotted in the interval 30 < z ÷ < 130 
and coincides almost exactly with the R3 profile except 
in the near surface region z ÷ > 130 (not shown) where 
it follows the log-law. The experimental data of  Nish- 
ino and Kasagi [8] agree quite closely with the above 
log-law but are consistently about  2.5% higher in the 
logarithmic region. The differences in the wake region 
are expected because the different value of  Re implies 
that the symmetry boundary condit ion is imposed at a 
higher z ÷ value. The profiles from the lower resolution 
runs R1 and R2 exhibit the correct logarithmic behav- 
iour but  are typically 7% too low and suggest that 
these meshes are too coarse. It is surprising that the 
subgrid model  used in run R0 is able to correct the 
profile of  R1 to the extent that it follows the computed 
profile of  R3 in the logarithmic region up to the start 
of  the wake region. It  is of  some engineering interest 
to quantify the coarsest (or least expensive) mesh that 
can be used for reliable computat ion of  certain fea- 
tures of  turbulent flows but the quality of  the other 
R0 statistics are considered too poor  to be useful. 

6. R E Y N O L D S  STRESS 

The Reynolds shear stress - - ( u ' w ' ) / u  2 normalised 
by the wall shear velocity u 2 is shown in Fig. 5. 
Also plotted is the total stress - ( u ' w ' ) /  
u 2 + ( l / R e + ) d u + / d z  +, used to indicate the state of  
development of  the flow, and the absence of  any sig- 
nificant deviations from a straight line confirms that 
the flow is fully developed. 

The computed Reynolds stress from run R3 is in 
excellent agreement with the K M M  simulation 
(Re  + = 180), both show a peak of  0.72 at z ÷ = 30. 

1 , 0  - -  

0.8  o ~  
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Fig. 5. Reynolds s t r e s s : - - ,  --(u'w')/u~ R3; 
- (u'w')/u~ + (1~Re +)du +/dz ÷ R3 ; [] Lain and Banerjee [5] 
Re + = 171 ; V, Kim et al. [2], Re + = 180; ©, Nishino and 

Kasagi [8], experimental Re + = 205. 
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Fig. 6. (a) Tnrbulent intensities (lower part of chan- 
n e D : - - - ,  U~mdU~; ------, Vrms/U~;-- ' - - ,  W~ms/U~; I--1, Lam 
and Banerjee [5], computed Re + = 171 ; V, Kim et aL [2], 
computed Re + = 205 ; @, Nishino and Kasagi [8] exper- 
imental Re + = 180. (b) Turbulent intensities (upper part of 
channel) : , U~ms/U~ ; ------, V~ms/U~ ; - - "  - - ,  Wr~dU~ ; ~ ,  Lam 
and Banerjee [5], computedRe + = 171 ; A, Komori et aL [2], 

experimental Re + = 176. 

The experimentally observed Reynolds stresses of  
Nishino and Kasagi [8] are in good agreement with 
the computed values, but show a slightly lower peak 
of  0.70 at the same z ÷ = 30. The LB computed stresses 
( R e  ÷ = 171) show good overall agreement, but the 
peak is higher at 0.76 and closer to the wall at z ÷ = 25. 
All the profiles agree in the near wall region z ÷ < 25. 
K M M  noted that the experimental measurements of  
Eckelmann [9] were too high relative to the computed 
values in this region and asymptotic analysis of  the 
near wall flow suggested that the measurements might 
be unreliable this close to the wall. The newer 
measurements made by Nishino and Kasagi [8] seem 
to correct this. 

7. TURBULENCE INTENSITIES 

The turbulence intensities normalized by the bed 
shear velocity are shown in Fig. 6(a) and (b) for the 
near-bed region and near-surface regions, respec- 

tively. The computed intensities from the LB and 
K M M  simulations are included and comparisons are 
made against the experimental measurements of  Nish- 
ino and Kasagi [8] and Komor i  et  al. [10]. 

Near  the bed, the experimental and K M M  U~ms pro- 
files are in good agreement, and the LB profile has a 
slightly lower peak value located nearer to the bed. 
The profile from run R3 also has a slightly lower peak 
value but in the same position as K M M :  however, 
the tail away from the bed is about  10% lower than 
the consensus. The agreement between V~ms profiles of  
K M M  and run R3 is good, but is about  10% lower 
than the experimental measurements. The LB profile 
is considerably higher than the consensus for z ÷ < 40 
but shows much better agreement further away from 
the wall. There is excellent agreement amongst  the 
W~ms profiles of  run R3, K M M ,  and the experimental 
measurements, but the LB profile is again con- 
siderably above this. 

Near  the surface the overall agreement is less good ; 
the overall shape of  the profiles are similar but the 
magnitudes differ by up to 15%. Part of  the dis- 
crepency is due to differences amonst  the intensities in 
the middle depth away from the surface influence : the 
R3 Urm~ is clearly too low, the LB V~ms and W~ms are too 
high. Al though some of  the profiles are in very good 
agreement, the overall agreement is relatively poor  
and more work needs to be done to establish a gen- 
erally accepted set of  profiles as is the case with the 
wall region. 

The effect of  the free surface is to increase the inten- 
sity of  the streamwise and spanwise fluctuations in a 
thin layer close to the surface; the simplest expla- 
nation is that the presence of  the impermeable bound- 
ary constrains the fluid motions to be parallel to it, 
and these motions contribute to the corresponding 
rms intensities. The thickness of  the layer is an integral 
measure of  the eddy size. 

The increases at the surface are much stronger in 
the experimental measurements than in the computed 
results and could be exaggerated by experimental 
error. LB have noted out that the experimental W~ms 
measurements tend to a constant, approximately 
equal to 0.2u, at the surface which suggest that ordi- 
nary water waves are present. I f  it is assumed that the 
wavelength is small compared with the depth, and 
hence that the particle orbits are circular, then there 
must be a similar enhancement of  the measured hori- 
zontal intensities. 

The measurements of  Vrms and W~ms of Komor i  et al. 

[10] are also not consistent with those of  Nishino and 
Kasagi [8] where they overlap in the middle depth. It 
is possible that the differences may be due the different 
physical boundary conditions in place, i.e. channel 
centreline and free-slip surface. 

8. SURFACE ELEVATION 

A view of  the free surface elevation h ( x , y )  nor- 
malized by depth d is shown in Fig. 7 for time 44d/u, .  
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Fig. 7. Surface elevation h(x, y) normalised by depth at time 44d/u~. 

The largest waves are those with their crests aligned 
normal to the streamwise direction, but  spanwise 
waves are also present. The dominant  modes (Kx, Ky) 
can be seen from the energy spectra (see Fig. 3) to be 
the (1,0) and (3, 0) modes, and overall the spanwise 
modes are much less energetic than the streamwise 
modes. The dominance of  the streamwise modes 
implies special forms for the surface elevation auto- 
correlations : the spanwise correlation Rhh(Y) does not 
decay significantly and remains near to unity across 
the flow; the streamwise correlation Rhh(x) oscillates 
and is significantly negative at the maximum separ- 
ation. In the present paper the waves are treated 
simply as surface deformations induced by turbulent 
eddies in the underlying flow ; the authors have made 
no attempt to separate time dependent components.  
The characteristic size of the surface deformation ~h 
is determined by equating the potential energy g6h 
with the kinetic energy ½u~, where it is supposed that 
the vertical velocity of a typical eddy is approximately 
equal to u,, so that after some rearrangement : 

6h 1 1 2 //U" "~2 

The wave height ~t is thus directly related to the bed 
s l o p e ,  and is very small (6h = O.O005d in the present 
simulation). The second part of  the equation shows 
that 6h varies with the square of the Froude number  
when the Reynolds number  is kept constant. The com- 
puted root-mean-square surface elevation hrm~ taken 
at time 44d/u* is equal to 1.14~h and is in excellent 
agreement with the above estimate. 

The results suggest that streamwise waves with long 
spanwise correlation lengths might be a stable feature 
of real turbulent  flows. 

9 .  TURBULENT KINETIC ENERGY EQUATION 

Figure 8 shows the computed profile of terms in the 
turbulent  kinetic energy equation : 

1 Y 2 
~xj [~ (u;u;uj) + (p'6,ju;)] + ~ V <u;u;) = 0, 

for the velocity component  i (repeated index i not  
summed). The terms are normalized by u4/v and only 
the streamwise (i = 1) component  is plotted ; the other 
component  terms are small in comparison. The pro- 
duetion term has its maximum value 0.23 at z + = 12 
which is about  23% lower than the maximum of 0.30 
located at z + = 10 computed by Lam and Banerjee 
[5]. Very near to the wall z + < 5 the dissipation is 
balanced by viscous diffusion of kinetic energy from 
the maximum production region; further out the 
diffusion processes are less significant and the main 
balance is between the losses to dissipation and pres- 
sure strain mediated exchange and the producti6n. 
The pressure strain term is negative; this is the pri- 
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Fig. 8. Terms of the turbulent kinetic energy equation for 
2 4 ~(u ) normalised by u~/v , production; , tur- 

bulent diffusion ; - - .  - - ,  viscous diffusion ; . . . .  , pressure 
strain ; - - - - - - ,  dissipation ; - - - ,  residual error. 
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mary source of  spanwise and vertical components  of  
turbulent kinetic energy because the production term 
for these must vanish. LB found that very near to the 
free surface the pressure strain term became slightly 
positive; this is consistent with the idea that at the 
free surface any vertical motion would tend to be 
redirected into the horizontal plane and hence appear 
as a source for streamwise kinetic energy. The authors 
have not examined this point. The overall agreement 
with LB is good to the extent that the computed pro- 
files look very similar but the magnitudes are con- 
sistently about  23% lower. This may be due to the use 
of  a relatively coarse mesh and a simulation on a finer 
mesh is planned to be carried out. 

sipation is due to using finite difference rather than 
spectral approximations. The agreement with pub- 
lished numerical and experimental data is in general 
very good. The worst agreement is for the root-mean- 
square velocity fluctuations on approaching the free 
surface, but the Komor i  et al. [10] experimental 
measurements of  this appear to be contaminated by 
excessive surface waves and are not  consistent with 
the Nishino and Kasagi [8] measurements in the 
middle depth of  the channel. The simulation suggests 
that streamwise surface waves with significant span- 
wise correlation and (rms) amplitude of  half  the chan- 
nel slope times the depth may be a stable feature of  
turbulent open channel flow. 

10. SUMMARY AND CONCLUSIONS 

A first simulation of  a turbulent open channel flow 
at a Reynolds number of  Re + = 171 and Froude num- 
ber of  Fr = 0.55 was performed using a relatively 
coarse mesh of  64 × 64 × 64 and a slightly restricted 
computat ional  box but allowing unconstrained move- 
ment of  the free surface. The numerical scheme used 
conventional finite differences on a staggered mesh 
for interior points but with the unstructured mesh 
technique described by Thomas et al. [4] applied to 
fluid cells near to the free surface. The method was 
designed to conserve mass, momentum,  and kinetic 
energy to the same extent as a conventional  turbulence 
code, and to be capable of  simulating large amplitude 
laminar and inviscid wave motions. The results have 
been compared with previous simulations at a similar 
Reynolds number of  a symmetric channel flow [2] and 
a half  channel with an impermeable and free-slip rigid 
lid [5], and with the experimental measurements of  
Nishino and Kasagi [8] and Komor i  et al. [10]. 

A series of  meshes have been used starting from a 
1 6 × 1 6 x 1 6  mesh but it is felt that only the 
64 × 64 × 64 (R3) mesh provided acceptable results, 
the others being too coarse, and the authors intend to 
perform a finer simulation with more points to con- 
firm the preliminary results. The results also suggest 
that the computat ional  box should be made slightly 
larger. The energy spectra show no evidence of  energy 
pile-up and confirm that the numerical scheme is 
stable, but show more rapid decay than expected at 
high wavenumbers : it is believed that this extra dis- 
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